热血传奇1.76版本完美仿官单机版安装教程+GM工具+无需虚拟机

今天给大家带来一款单机游戏的架设:热血传奇1.76版本完美仿官。

另外:本人承接各种游戏架设(单机+联网)

本人为了学习和研究软件内含的设计思想和原理带了架设教程仅供娱乐。

教程是本人亲自搭建成功的,绝对是完整可运行的,踩过的坑都给你们填上了。

如果你是小白也没问题,跟着教程走也是可以搭建成功的,但是一定要有耐心。。。

视频演示

热血传奇1.76版本完美仿官单机版安装教程+GM工具+无需虚

服务器架设

此游戏架设无需虚拟机,将游戏解压到d盘根目录,如:

注意必须是这个路径,否则游戏可能会启动失败。

游戏文件我已经准备好了,移步: gitee颠康姆/lz-code/game_01.git (注意修改“颠康姆”)

启动 "引擎控制器"

这里可能会报错

如果没有报错的直接跳过,报错了的解决方案在下载的文件里面有。

服务启动成功

客户端

运行客户端安装

然后将D:\MirServer\配套登陆器\单机登陆器里面的2个文件 复制到上面安装的客户端目录里面

然后启动热血传奇.exe , 选中单机服务器进行游戏。

开完了

账号注册点击新用户注册就可以了。

GM工具

游戏中安装F12唤出内挂

gm工具,打开后点击登陆 ,内容自行研究哦

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。

登录后您可以享受以下权益:

×
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
点击体验
DeepSeekR1满血版
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部