物理学(Physics),是研究物质最一般的运动规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。
物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。 [1]
2021年,中国物理学自然指数排名世界第一。 [4]
- 学科起源
- 人类社会实践的发展
- 物理语言
- 物理模型、物理定律、物理公式、物理图像
物理学是一门自然科学,注重于研究物质、能量(喇体永相互作用)、空间枣杠体、时间,尤其是它们各自的性质与彼此之间的相互关系。物理学是关于大自然规律的知识;更广义地说,物理学探索并分析大自然所发生的现象,以了解其规则。
1. 空间尺度:
介观物质(mesos雄牛copic)
宏观物质(macroscopic)
2. 剃枣询时间润壳尺度:
宇宙寿命: 1018旋局催s
按速率大小划分: 相对论物理学、非相对论物理学。
按运动速度划分:只承趋篮低速、中速、高速。
●电磁学(electromagnetism)与电动力学(electrodynamics)研究经典的电磁现象,主要包括:带电物质的动力学、宏观材料的导电/介电性质和导磁/介磁性质、经典电磁场的基本性质及运动规律、带电物质与电磁场的相互作用。
此外,还有:
物理学研究的领域可分为下列四大方面:
1. 凝聚态物理——研究物质宏观性质,这些物质内包含极大数目的组元,且组元间相互作用极强。最熟悉的凝聚态相是固体和液体,它们由原子间的键和电磁力所形成。更多的凝聚态相包括超流和玻色-爱因斯坦凝聚态(在十分低温时,某些原子系统内发现);某些材料中导电电子呈现的超导相;原子点阵中出现的铁磁和反铁磁相。凝聚态物理一直是最大的的研究领域。历史上,它由固体物理生长出来。1967年由菲立普·安德森最早提出,采用此名。
2. 原子、分子和光学物理——研究原子尺寸或几个原子结构范围内,“物质-物质”和“光-物质”的相互作用。这三个领域是密切相关的。因为它们使用类似的方法和有关的能量标度。它们都包括经典和量子的处理方法;从微观的角度处理问题。原子物理处理原子的壳层,集中在原子和离子的量子控制;冷却和诱捕;低温碰撞动力学;准确测量基本常数;电子在结构动力学方面的集体效应。原子物理受核的影晌。但如核分裂、核合成等核内部现象则属高能物理。 分子物理集中在多原子结构以及它们,内外部和物质及光的相互作用,这里的光学物理只研究光的基本特性及光与物质在微观领域的相互作用。
3. 高能/粒子物理——粒子物理研究物质和能量的基本组元及它们间的相互作用;也可称为高能物理。因为许多基本粒子在自然界原本并不存在,只在粒子加速器中与其它粒子高能碰撞下才出现。据基本粒子的相互作用标准模型描述,有12种已知物质的基本粒子模型(夸克和轻粒子)。它们通过强、弱和电磁基本力相互作用。2023年,欧洲核子研究中心(CERN)的实验团队找到了希格斯玻色子衰变为Z玻色子和光子的首个证据。 [6]
4. 天体物理——天体物理和现代天文学是将物理的理论和方法应用于研究星体的结构和演变、太阳系的起源,以及宇宙的相关问题。因为天体物理的范围宽,它利用了物理的许多原理,包括力学、电磁学、统计力学、热力学和量子力学。1931年,卡尔发现了天体发出的无线电讯号,开始了无线电天文学。天文学的前沿已被空间探索所扩展。地球大气的干扰使观察空间需要用到红外、超紫外、伽玛射线和X射线。物理宇宙论研究在宇宙的大范围内宇宙的形成和演变。爱因斯坦的相对论在现代宇宙理论中起了中心的作用。20世纪早期哈勃从图中发现了宇宙在膨胀,促进了宇宙的稳定状态论和大爆炸之间的讨论。1964年宇宙微波背景的发现,证明了大爆炸理论可能是正确的。大爆炸模型建立在二个理论框架上:爱因斯坦的广义相对论和宇宙论原理。宇宙论已建立了ACDM宇宙演变模型,它包括宇宙的膨胀、暗能量和暗物质。 从费米伽玛-射线望远镜的新数据和现有宇宙模型的改进,可期待出现许多可能性和发现。尤其是今后数年内,围绕暗物质方面可能有许多发现。
● 1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。
● 20世纪70年代出现了大规模集成电路。
物理与物理技术的关系:
● 电气化的进程,提供了第二种模式:物理 —— 技术 —— 物理
当今物理学和科学技术的关系两种模式并存,相互交叉,相互促进。“没有昨日的基础科学,就没有今日的技术革命”。例如:核能的利用、激光器的产生、层析成像技术(CT)、超导电子技术、粒子散射实验、X 射线的发现、受激辐射理论、低温超导微观理论、电子计算机的诞生。几乎所有的重大新(高)技术领域的创立,事先都在物理学中经过长期的酝酿。
物理学的方法和科学态度:提出命题 → 理论解释 → 理论预言 → 实验验证 → 修改理论。
现代物理学是一门理论和实验高度结合的精确科学,它的产生过程如下:
- 1.物理命题一般是从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来;
- 2.
- 3.新理论模型必须提出预言,并且预言能够为实验所证实;
- 4.一切物理理论最终都要以观测或实验事实为准则,当一个理论与实验事实不符时,它就面临着被修改或被推翻。
● 学习物理的方法
著名物理学家费曼说:“科学是一种方法。它教导人们:一些事物是怎样被了解的,什么事情是已知的,了解到了什么程度,如何对待疑问和不确定性,证据服从什么法则;如何思考事物,做出判断,如何区别真伪和表面现象?”
著名物理学家爱因斯坦说:“发展独立思考和独立判断的一般能力,应当始终放在首位,而不应当把专业知识放在首位。如果一个人掌握了他的学科的基础理论,并且学会了独立思考和工作,他必定会找到自己的道路,而且比起那种主要以获得细节知识为其培训内容的人来,他一定会更好地适应进步和变化。”
● 学习的观点:从整体上逻辑地、协调地学习物理学,了解物理学中各个分支之间的相互联系。
● 物理学的本质:物理学并不研究自然界现象的终极机制(或者根本不能研究),人只能在某些现象中感受自然界的规则,并试图以这些规则来解释自然界所发生任何的事情。人类有限的智力总试图在理解自然,并试图改变自然,这是物理学,甚至是所有自然科学共同追求的目标。
首先,物理学是人们对自然界中物质的运动和转变的知识做出规律性的总结。
这种运动和转变应有两种。一是早期人们通过感官视觉的延伸;二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。
物理学从研究角度及观点不同,可大致分为微观与宏观两部分:宏观物理学不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的;微观物理学的诞生,起源于宏观物理学无法很好地解释黑体辐射、光电效应、原子光谱等新的实验现象。它是宏观物理学的一个修正,并随着实验技术与理论物理的发展而逐渐完善。
其次,物理又是一种智能。
诚如诺贝尔物理学奖得主、德国科学家玻恩所言:“如其说是因为我发表的工作里包含了一个自然现象的发现,倒不如说是因为那里包含了一个关于自然现象的科学思想方法基础。”物理学之所以被人们公认为一门重要的科学,不仅仅在于它对客观世界的规律作出了深刻的揭示,还因为它在发展、成长的过程中,形成了一整套独特而卓有成效的思想方法体系。正因为如此,使得物理学当之无愧地成了人类智能的结晶,文明的瑰宝。
大量事实表明,物理思想与方法不仅对物理学本身有价值,而且对整个自然科学,乃至社会科学的发展都有着重要的贡献。有人统计过,自20世纪中叶以来,在诺贝尔化学奖、生物及医学奖,甚至经济学奖的获奖者中,有一半以上的人具有物理学的背景——这意味着他们从物理学中汲取了智能,转而在非物理领域里获得了成功。反过来,却从未发现有非物理专业出身的科学家问鼎诺贝尔物理学奖的事例。这就是物理智能的力量。
总之,物理学是对自然界概括规律性的总结,是概括经验科学性的理论认识。
1. 真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。
2. 和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。量子力学的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。
4. 对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。例如:物理学中各种晶体的空间点阵结构具有高度的对称性、竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。
5. 预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如:麦克斯韦电磁理论预测电磁波存在、卢瑟福预言中子的存在、菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑、狄拉克预言正电子的存在 [5]。
6. 精巧性:物理实验具有精巧性。设计方法的巧妙,使得物理现象更加明显。
时间 | 人物 | 获奖原因 |
---|---|---|
1901年 | 威尔姆·康拉德·伦琴(德国人) | 发现X射线 |
1902年 | 亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人) | |
1903年 | 安东尼·亨利·贝克勒尔(法国人) | 发现物质的放射性 |
从事镭元素的研究 | ||
1904年 | J. W. 瑞利(英国人) | 从事气体密度的研究并发现氩元素 |
1905年 | P. E. A. 雷纳尔德(德国人) | 从事阴极线的研究 |
1906年 | 约瑟夫·约翰·汤姆生(英国人) | 对气体放电理论和实验研究作出重要贡献 |
1907年 | A. A. 迈克尔逊(美国人) | |
1908年 | 加布里埃尔·李普曼(法国人) | 发明了彩色照相干涉法(即李普曼干涉定律) |
1909年 | 伽利尔摩·马可尼(意大利人)、K. F. 布劳恩(德国人) | 开发了无线电通信,研究发现理查森定律 |
1910年 | 翰尼斯·迪德里克·范德华(荷兰人) | 从事气态和液态议程式方面的研究 |
1911年 | W. 维恩(德国人) | 发现热辐射定律 |
1912年 | N. G. 达伦(瑞典人) | 发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 |
1913年 | H·卡末林-昂内斯(荷兰人) | 从事液体氦的超导研究 |
1914年 | 马克斯·凡·劳厄(德国人) | |
1915年 | ||
1916年 | 未颁奖 | |
1917年 | C. G. 巴克拉(英国人) | 发现元素的次级X辐射的特征 |
1918年 | 马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人) | |
1919年 | ||
1920年 | 发现镍钢合金的反常现象及其在精密物理学中的重要性 | |
1921年 | ||
1922年 | 尼尔斯·亨利克·大卫·玻尔(丹麦人) | |
1923年 | R. A. 米利肯(美国人) | |
1924年 | K. M. G. 西格巴恩(瑞典人) | 发现了X射线中的光谱线 |
1925年 | 詹姆斯·弗兰克、G. 赫兹(德国人) | 发现原子和电子的碰撞规律 |
1926年 | J. B. 佩兰(法国人) | 研究物质不连续结构和发现沉积平衡 |
1927年 | 阿瑟·霍利·康普顿(美国人) | |
1927年 | ||
1928年 | O. W. 理查森(英国人) | 从事热离子现象的研究,特别是发现理查森定律 |
1929年 | 路易斯·维克多·德布罗意(法国人) | 发现物质波 |
1930年 | C. V. 拉曼(印度人) | 从事光散方面的研究,发现拉曼效应 |
1931年 | 未颁奖 | |
1932年 | 创建了量子力学 | |
1933年 (1934年未颁奖) | 埃尔温·薛定谔(奥地利人)、P. A. M. 狄拉克(英国人) | 发现原子理论新的有效形式 |
1935年 | 发现中子 | |
1936年 | 发现宇宙射线 | |
1936年 | C. D. 安德森(美国人) | 发现正电子 |
1937年 | C. J. 戴维森(美国人)、G. P. 汤姆森(英国人) | 发现晶体对电子的衍射现象 |
1938年 | E. 费米(意大利人) | |
1939年 (1940年~1942年未颁奖) | E. O. 劳伦斯(美国人) | |
1943年 | O. 斯特恩(美国人) | |
1944年 | I. I. 拉比(美国人) | |
1945年 | 沃尔夫冈·E·泡利(奥地利人) | 发现不相容原理 |
1946年 | P. W. 布里奇曼(美国人) | |
1947年 | E. V. 阿普尔顿(英国人) | 证实了电离层的存在 |
1948年 | 改进了威尔逊云雾室方法,并由此导致系列发现 | |
1949年 | 汤川秀树(日本人) | |
1950年 | C. F. 鲍威尔(英国人) | 开发了用以研究核破坏过程的照相乳胶记录法并发现各种介子 |
1951年 | J. D. 科克罗夫特(英国人)、E. T. S. 沃尔顿(爱尔兰人) | |
1952年 | 从事物质核磁共振现象的研究并创立原子核磁力测量法 | |
1953年 | F. 泽尔尼克(荷兰人) | 发明了相衬显微镜 |
1954年 | 在量子力学和波函数的统计解释及研究方面作出贡献 | |
1954年 | W. 博特(德国人) | 发明了符合计数法,用以研究原子核反应和γ射线 |
1955年 | W. E. 拉姆(美国人) | 发明了微波技术,进而研究氢原子的精细结构 |
1955年 | P. 库什(美国人) | |
1956年 | W. H. 布拉顿、J. 巴丁、W. B. 肖克利(美国人) | 从事半导体研究并发现了晶体管效应 |
1957年 | ||
1958年 | P. A. 切伦科夫、I. E. 塔姆、I. M. 弗兰克(俄国人) | 发现并解释了切伦科夫效应 |
1959年 | 发现反质子 | |
1960年 | ||
1961年 | R. 霍夫斯塔特(美国人) | 利用直线加速器从事高能电子散射研究并发现核子 |
1961年 | R. L. 穆斯保尔(德国人) | |
1962年 | 列夫·达维多维奇·朗道(俄国人) | |
1963年 | E. P. 威格纳(美国人) | |
1963年 | M. G. 迈耶(美国人)、J. H. D. 延森(德国人) | |
1964年 | ||
1965年 | ||
1966年 | A. 卡斯特勒(法国人) | 发现和开发了把光的共振和磁的共振合起来,使光束与射频电磁发生双共振的双共振法 |
1967年 | H. A. 贝蒂(美国人) | 以核反应理论作出贡献,特别是发现了星球中的能源 |
1968年 | L. W. 阿尔瓦雷斯(美国人) | |
1969年 | M. 盖尔曼(美国人) | 发现基本粒子的分类和相互作用 |
1970年 | L. 内尔(法国人) | 从事铁磁和反铁磁方面的研究 |
1971年 | D. 加博尔(英国人) | 发明并发展了全息摄影法 |
1972年 | J. 巴丁、L. N. 库柏、J. R. 施里弗(美国人) | 从理论上解释了超导现象 |
1973年 | 江崎玲于奈(日本人)、I. 贾埃弗(美国人) | 通过实验发现半导体中的“隧道效应”和超导物质 |
1973年 | B. D. 约瑟夫森(英国人) | 发现超导电流通过隧道阻挡层的约瑟夫森效应 |
1974年 | ||
1975年 | A. N. 玻尔、B. R. 莫特尔森(丹麦人)、J. 雷恩沃特(美国人) | 从事原子核内部结构方面的研究 |
1976年 | 发现很重的中性介子 —— J/φ粒子 | |
1977年 | 从事磁性和无序系统电子结构的基础研究 | |
1978年 | P. 卡尔察(俄国人) | 从事低温学方面的研究 |
1978年 | 发现宇宙微波背景辐射 | |
1979年 | 预言存在弱中性流,并对基本粒子之间的弱作用和电磁作用的统一理论作出贡献 | |
1980年 | J. W. 克罗宁、V. L. 菲奇(美国人) | 发现中性K介子衰变中的宇称(CP)不守恒 |
1981年 | K. M. 西格巴恩(瑞典人) | 开发出高分辨率测量仪器 |
1981年 | N. 布洛姆伯根、A. 肖洛(美国人) | |
1982年 | K. G. 威尔逊(美国人) | 提出与相变有关的临界现象理论 |
1983年 | S. 昌德拉塞卡、W. A. 福勒(美国人) | 从事星体进化的物理过程的研究 |
1984年 | C. 鲁比亚(意大利人)、S. 范德梅尔(荷兰人) | |
1985年 | 发现量子霍耳效应并开发了测定物理常数的技术 | |
1986年 | E. 鲁斯卡(德国人) | 在电光学领域做了大量基础研究,开发了第一架电子显微镜 |
1986年 | G. 比尼格(德国人)、H. 罗雷尔(瑞士人) | 设计并研制了新型电子显微镜——扫描隧道显微镜 |
1987年 | 发现氧化物高温超导体 | |
1988年 | L. 莱德曼、M. 施瓦茨、J. 斯坦伯格(美国人) | |
1989年 | ||
1990年 | J. I. 弗里德曼、H. W. 肯德尔(美国人)、理查德·E·泰勒(加拿大人) | |
1991年 | 皮埃尔-吉勒·德热纳(法国人) | 从事对液晶、聚合物的理论研究 |
1992年 | G. 夏帕克(法国人) | 开发了多丝正比计数管 |
1993年 | R. A. 赫尔斯、J. H. 泰勒(美国人) | |
1994年 | B. N. 布罗克豪斯(加拿大人)、C. G. 沙尔(美国人) | |
1995年 | M. L. 佩尔、F. 莱因斯(美国人) | |
1996年 | D. M. 李(美国人)、D. D. 奥谢罗夫(美国人)、理查德·C·理查森(美国人) | 发现在低温状态下可以无摩擦流动的氦- 3 |
1997年 | 朱棣文(美籍华人)、W. D. 菲利普斯(美国人)、C. 科昂-塔努吉(法国人) | |
1998年 | 发现了分数量子霍尔效应 | |
1999年 | H. 霍夫特(荷兰)、M. 韦尔特曼(荷兰) | |
2000年 | 阿尔费罗夫(俄罗斯人)、基尔比(美国人)、克雷默(美国人) | |
2001年 | 克特勒(德国)、康奈尔(美国)和维曼(美国) | 在“碱性原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基础性研究”方面取得成就。 |
2002年 | 在天体物理学领域做出的先驱性贡献,打开了人类观测宇宙的两个新“窗口”。 | |
2003年 | ||
2004年 | 这三位科学家对夸克的研究使科学更接近于实现它为“所有的事情构建理论”的梦想。 | |
2005年 | 研究成果可改进GPS技术 | |
2006年 | ||
2007年 | ||
2008年 | ||
2009年 | 英国籍华裔物理学家高锟 | “在光学通信领域中光的传输的开创性成就” |
2009年 | “发明了成像半导体电路——电荷藕合器件图像传感器CCD” | |
2010年 | ||
2011年 | 因发现宇宙加速膨胀最终能够可能变成冰 | |
2012年 | 法国科学家沙吉·哈罗彻(Serge Haroche) [2]与美国科学家大卫·温兰德(David J. Winland) [3] | 实现对单个量子系统的操作和测量而不改变其量子力学属性 |
2013年 | 比利时理论物理学者弗朗索瓦·恩格勒和英国理论物理学家彼得·希格斯 | 因预测被称为“上帝粒子”的希格斯玻色子的存在而获奖 |
2014年 | 日本科学家赤崎勇、日裔美国科学家中村修二及日本科学家天野浩 | 开发了蓝色发光二极管(LED),使节电的高亮度照明器材成为可能,极大改变了人们的生活。 |
2015年 | 日本科学家梶田隆章和加拿大科学家亚瑟·麦克唐纳 | 因发现中微子振荡,证明中微子有质量而获奖。 |
2016年 | 英国科学家大卫·索利斯、邓肯·霍尔丹和迈克尔·科斯特利茨 | 因在理论上发现了物质的拓扑相变和拓扑相而荣获该奖项。 |
2017年 | 雷纳·韦斯、巴里·巴瑞斯和吉普·索恩 | 因引力波探测研究获奖。 |
2018年 | 美国科学家阿瑟·阿什金、法国科学家热拉尔·穆鲁及加拿大科学家唐娜·斯特里克兰 | 在激光物理学领域取得的突破性贡献。 |
2019年 | 加拿大裔美国科学家詹姆斯·皮布尔斯、瑞士科学家米歇尔·马约尔与瑞士科学家迪迪埃·奎洛兹 | 加拿大裔美国科学家詹姆斯·皮布尔斯的获奖理由是他在物理宇宙学领域的理论性发现;瑞士科学家米歇尔·马约尔与瑞士科学家迪迪埃·奎洛兹则因“发现了围绕其他类太阳恒星运行的系外行星”获奖。 |
2020年 | 英国科学家罗杰·彭罗斯、德国科学家赖因哈德·根策尔和美国科学家安德烈娅·盖兹 | 英国科学家罗杰·彭罗斯因证明黑洞是爱因斯坦广义相对论的直接结果而获奖;德国科学家赖因哈德·根策尔和美国科学家安德烈娅·盖兹因在银河系中央发现超大质量天体而获奖。 |
2021年 | 日裔美籍科学家真锅淑郎和德国科学家克劳斯·哈塞尔曼,意大利科学家乔治·帕里西 | 日裔美籍科学家真锅淑郎和德国科学家克劳斯·哈塞尔曼因“建立地球气候的物理模型、量化其可变性并可靠地预测全球变暖”的相关研究获奖,意大利科学家乔治·帕里西因“发现了从原子到行星尺度的物理系统中无序和波动的相互作用”获奖。 |
2022年 | 阿兰·阿斯佩(Alain Aspect),约翰·弗朗西斯·克劳泽(John F. Clauser)和安东·塞林格(Anton Zeilinger) | 因在量子信息科学领域的研究共同获得这一奖项。 |
参考资料 [7] |
2021年,中国物理学在自然指数排名中超越美国成为世界第一,且贡献率逐年提高。 [4]